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Improved Methods for Calculating Vectors 
of Short Length in a Lattice, Including 

a Complexity Analysis 

By U. Fincke and M. Pohst 

Abstract. The standard methods for calculating vectors of short length in a lattice use a 
reduction procedure followed by enumerating all vectors of Z'.. in a suitable box. However, it 
suffices to consider those x E Z'" which lie in a suitable ellipsoid having a much smaller 
volume than the box. We show in this paper that searching through that ellipsoid is in many 
cases much more efficient. If combined with an appropriate reduction procedure our method 
allows to do computations in lattices of much higher dimensions. Several randomly con- 
structed numerical examples illustrate the superiority of our new method over the known 
ones. 

1. Introduction. In this paper we develop a new and efficient method for 
determining vectors b of short Euclidean length llbll in a lattice A of rank m, 

(1.1) A =Zbl + * +Zbm, 

for linearly independent vectors b1, . . , b,,2 of R". The standard algorithms for solving 
this task (see, for example, [4] in the case m = n) compute all x E Zm \ {0) subject 
to 

(1.2) xtrBtrBx C C 
for suitable C E R'0, where B denotes the n X m matrix with columns b1,.. ., bin. If 
we just want to find a vector of shortest length in A, we must determine 

(1.3) min{xtrBtrBx 10 O x E Z"I}. 

This can also be done by the methods for solving (1.2). As initial value for C we 
choose the length of an arbitrary (short) vector of A, and each time a vector of 
shorter length is obtained, C is decreased suitably. 

We note that BtrB =:A is a positive-definite matrix. On the other hand, each 
positive-definite matrix A E Rm x m can be considered as the inner product matrix of 
the basis vectors b1,.. . ,bn1 of some lattice A of rank m. Hence, it suffices to discuss 

(1.4) xtrAx < C 

instead of (1.2) in the sequel. 
In Section 2, we describe the new algorithm for solving (1.4) which is based on 

reduction theory and Cholesky's method. Section 3 contains a complexity analysis 
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proving the superiority of our algorithm over known methods, and in Section 4 we 
present some numerical results for randomly generated examples. 

All machine computations were carried out on the CDC Cyber 76 of the 
Rechenzentrum der Universitat zu Koln. 

2. A New Algorithm. Our new algorithm uses Cholesky's method which is an 
efficient procedure of decomposing a positive-definite quadratic matrix A E Rm"X 
into the product of an upper triangular matrix R and its transpose. The method 
combines the advantage of a comparatively low number of arithmetic operations 
with high numerical stability. 

We shall use Cholesky's method for transforming the positive-definite quadratic 
form 

(2.1) xtrAx (x E Rmxl) 

for A = BtrB of (1.2) into a sum of full squares, a procedure which we call quadratic 
completion. Namely, xtrAx = ,m a becomes 

"I m 2 

(2.2) Q(x):= Yq,, xI+ + q,jxj 
i=1 J='+1 

by carrying out the computations 

Set qij <- aij (I < i < j < m). 

(2.3) Fori = 1,2 ...,IM - 1, set 

qj <- qlj, qlj <- (i + < j < m) 

and for each i and k = i + 1,.. .,m, set 

qkl ,qkl -qkl qll ( k < I < m) . 

We note that the output R of Cholesky's method which satisfies RtrR = A slightly 
differs from the output q,j (1 < i < j < m) of (2.3). The entries rij of R E GL(m, R) 
can easily be recovered by 

r,j(=)0 (Il<j<i<m), ri.= q>l2 (liM), 

(2.4) r~~~~i; riiq,j (I < i < j < m) 

(and vice versa, of course). Generally, we are interested in the q,j because of the 
applicability of (2.2). Namely, (2.2) makes it simple to compute all solutions x E Zm 

of 

(2.5) xtrAx = Q(x) < C 

where C is a positive constant. This is a problem occurring in many disciplines of 
mathematics, for example in integer mathematical programming [3] and algebraic 
number theory [2], also in connection with the generation of pseudo-random 
numbers [4] and breaking public cryptosystems [6]. We already noted in the 
introduction that (2.5) is equivalent to determining all lattice vectors b of length 

llb112 < C in an m-dimensional lattice A = E m 1 Zb, for which the inner product of 
two basis vectors bj, bj (1 < i < j < m) is given by the entry aij of A. Also, (2.5) can 
be interpreted as the task of computing all points of zm in an ellipsoid. 
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The following procedure of solving (2.5) is suggested by (2.2). Clearly, IxmJ is 
bounded by [(C/qmm)l/2J. For each possible value of xm we obtain 

qm-1 M-1(xM-1 + qm_ mx Tm_1 for Tm := C -qmm4, 

hence bounds 

LB(xmi,):= [<q Tm )1/2_ qm l,mXml 

UB (xmi):= [(qjmi;1l2 - l~,mxm] 

such that LB(xmi ) < xm_I < UB((x m). Proceeding to Xm-2, Xm-3 *... we obtain 

for fixed xm9 xm-l_... *Xk+. 1 
k m 2 

(2.6) ?',qi, xi+ ? qi,x, < Tk 
1=1 j=i+1 

with 
n1 ~~~~2 

(2.7) Tk = Tk+l qk+l, k+l Xk+1 + Eqk+l,X ) 

j = k + 2 

(Tm = C; k = m-1, m-2, . ... 1). 

These considerations lead to the following algorithm. 

(2.8) Algorithm for Solving Q(x) < C. 

Input. Entries q,J (1 < i < j < m) of Q(x) of (2.2) and a positive constant C. 

Output. All x e Zm subject to x * 0 and Q(x) < C as well as Q(x). 

Step 1. (Initialization) Set i <- m, T, -C, Ui -O. 

Step 2.(Bounds for xi) Set Z <- (T1/ql)l/2, UB(x, ) [Z- 
S <t [.-Z - Uvj-1. 

Step 3. (Increase x,) Set x, <- xi + 1. For x, < UB(x,) go to 5, else to 4. 

Step 4. (Increase i) Set i <- i + 1 and go to 3. 

Step 5. (Decrease i) For i = 1 go to 6. Else set i <- i - 1, U, <- E m_I+ q,xj 

Ti T+1 -qi+, i+,(x,+, + UJ+1)2 and go to 2. 

Step 6. (Solution found) For x = 0 terminate, else print x, - x, Q(x) = C - T1 + 

q,1(x, + U1)2 and go to 3. 

Remark. We note that the highest nonvanishing coordinate of x is restricted to be 

negative, and we terminate in case x = 0 is obtained. By then we know all solutions 

because of Q(x) = Q(- x). If we modify the task and want to obtain only those 

solutions x of (2.5) which additionally satisfy Q(x) > C'> 0, we just need to change 

the bounds for the coordinate xl adequately. Unfortunately, this does not have a 

considerable effect on the computation time. 

A preliminary version of (2.8) was already given in [7]. A comparison with the 

methods of U. Dieter [1] and D. Knuth [4], however, lead to a further improvement 

of (2.8). Namely, denoting the ith columns of R, (R-1)tr by ri, re', respectively, we 

obtain for the ith coordinate x1 of a solution x E Zmx '1 of (1.2) 

(2.9) x2 = (rtr( L xkrk < r r1'(xtRtRx) <| r'll 2C (1 l i < m). 
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Hence, it is clear that reducing the rows of the matrix R-1 with respect to their 
length usually diminishes the range for the coordinates of possible candidates 
drastically. Common reduction methods are described in [1], [4], [5], [7]. We note 
that the reduction of Knuth [4] essentially coincides with the pair reduction 
algorithm of [7]. In any case the reduced version is obtained from R - 1 by multiply- 
ing R - 1 with a suitable unimodular matrix U- 1 from the left to obtain 
S - 1 := U- 'R Then, instead of solving xtrRtrRx < C, we solve 

(2.10) ytrstrsy < C 

by (2.8) and recover x from y via 

(2.11) x = Uy. 

A further improvement is obtained by reordering the columns of S, i.e., the order 
of the elimination process (2.3), adequately. Namely, in (2.8) it should be avoided 
that some segment (Xm,... ,xk?1) cannot be extended to a solution (xm,...,x1). 
And the probability for this phenomenon decreases, if the range for xk,... ,x 

derived from (2.9) increases. 
After these observations the following algorithm is immediate. 

(2.12) Improved Algorithm for Solving xtrAx < C. 
Input. A E Rm x m positive-definite, C E R>'. 
Output. All x E Z"1 subject to x = 0 and xtrAx < C. 
Step 1. (Cholesky decomposition of A) Compute the upper triangular matrices R, 

R - 1 from A by (2.3), (2.4). 
Step 2. (Reduction) Compute a row-reduced version S-1 of R1 as well as 

U` E GL(m, Z) subject to S-i = U-1R -. Compute S = RU. 
Step 3. (Reorder columns of S) Determine a permutation ST E ym such that 

IIS,1T()II > 11s17(2)l > ..> lls'7(m) l). Let S be the matrix with columns 
Sq-( ( < i< m) 

Step 4. (Cholesky decomposition of S tS) Compute the upper triangular matrix 
Q = (qlJ) from StrS by (2.3). 

Step 5. (Application of (2.8)) Compute all solutions y E Zm, y = 0, of Q(y) < C 
by(2.8) andprintx = U(yq_Il(l),...,y"_ l(m))trforeachy. 

The algorithm can easily be modified such that it computes all solutions x of 
C, < xtrAx < C or a solution of (1.3). 

Finally, we note that a similar algorithm for the solution of (1.2) can be developed 
starting from the computation of orthogonal vectors bt, . . ., bm from b1, . . ., bm by the 
Gram-Schmidt-orthogonalization procedure. This was pointed out to us by the 
referee whom we thank for useful hints. 

3. Complexity Analysis. In this section we compare the enumeration techniques of 
[1], [4] with our algorithm (2.12) by estimating the number of arithmetic operations 
in both cases. We count each addition, multiplication, and extraction of a square-root 
as one operation. 

Algorithm (2.12) produces at most as many lattice points as the enumeration 
techniques. This is an immediate consequence of (2.9). Whereas (2.12), respectively 
(2.8), needs at most O(m2) arithmetic operations to proceed from one vector x (or 
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part of it) to the next (by decreasing or increasing i and because of Step 5 of (2.8)), 
the enumeration method requires O(m2) arithmetic operations for computing Q(x) 
for each x. Hence, the complexity of both techniques is at most 

(3.1) O(m211(2[JJriiQC + 1)). 

(For the enumeration method this can eventually be improved by a factor m -1 using 
refined storing techniques.) However, (3.1) suggests that both algorithms are ex- 
ponential in the input data, a disadvantage which is inherent in the problem itself. 
Namely, in case A = Im (the m-dimensional unit matrix) the solutions of (2.5) are 
the- lattice points of Zm in the m-dimensional ball centered at the origin of radius 
fC. It is well-known that the number of those lattice points is proportional to the 
volume of the ball and therefore increases with VUm. 

But what happens, if we keep C fixed and just increase m? Then the enumeration 
method is still exponential whereas-somewhat surprisingly-(2.12) is polynomial 
time, if we additionally require that the lengths of the rows of R1 for the matrix R 
of the Cholesky decomposition A = RtrR stay bounded. 

To prove this, we first derive an upper bound for the number of tuples (xi, .. , xm) 
generated by Algorithm (2.8) under the assumption that the input data q,"" satisfy 

qfi,J,u > I (I < ,u < m). We define 

r"I m 2 

(3.2) Qi(xi,...,xm):= Yquu xu+ ? quvxv (1 i m. 
,u =i ,,= ,u+ 1 

We know from (2.8) that for fixed xi+1 ,. ... ,xm E Z subject to Qi+1(xij1,...,xm) < C 
there are at most 

(3.3) [2(Ti/qii )1|2 + 1 

possibilities for xi E Z, say xil,. ...,.xi, such that Qi(xi,.. .,x,m) < C. We order the 

xi according to 

(3.4) ix+ L1 x1 + .. + l 

where Ui = _m_i+ I qi x as in Step 5 of (2.8). Then it is easily seen that 

(3.5) ( j - 1)/2 < Ixi + Ui < j/2 (1 < j < k). 

This leads to an important recursive estimate for the numbers 

(3.6) Pi(r):= #{(xi,...,xm) E Zm?llI Qi(Xi,...,Xrn) < r} 

for arbitrary r E R 0. 

Indeed, (3.5) and q,> 1(1 t < m) yield 

12#i *2 14r] 

(3.7) Pi(r)< E Pi+,- J4) < P1+,(r-j/4). 
,j=O ,= 

We point out that (2.8) can produce segments (xi+,...,x,) E Z-i'' subject to 

Qi+I(xi+P ...,Xm) < C for which no xi E Z with Qi(xi, . . x,,,) < C exists. How- 
ever, the total number of tuples generated by the algorithm is bounded by P1(C), 
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where the numbers Pi(r) are defined by 
m 

(3.8) Pi (r):= ?,Pj(r) (I < i < m) 
I=i 

Obviously, inequality (3.7) also holds for the P,(r). This enables us to obtain an 
upper bound for P1 in terms of Pm by computing coefficients f3j such that 

14C] 

(3.9) PI(C) E /P,J,(C - j/4) (I < i < m) 
J=O 

As initial values we get 

(3.10) /3o=1, flj = 0 for j > 0, 

and if the flij (0 < j < [4C|) are known for fixed i, then (3.7) applied to Pi(r) yields 
the recursive formula 

(3.11) =li+ =j 1Pk (0 <j < [4C]). 
k=O 

Hence, we can compute the 8ij row by row. 

(3.12) LEMMA. The numbers flJ Ee Z>0 defined by (3.10) and (3.11) satisfy 

+1,J =k- 1 k (i E Nj E Z`?) 

Proof. We show the lemma by induction on i. For i = 1 we have 

rI j k =1 flk = f2j 
k=1 k=O 

For fixed i > 1, we obtain 
I 

k + 1 - + k 

k=O k=O 1=1 k=1 k 
because of 

i 1-1 1 

But the last equation is valid for arbitrary j E Z >, i E N and is itself proved by 
induction onj. El 

Using Lemma (3.12) and (3.3) we easily obtain the following upper bound for 

P,(C) from (3.8): 

iP1(c) < ? 
1 

]mjPm(C-j/4) = (Hj k )(2[(C j/4) 1/2] + i) 
j=O 0k1 

14C] m-2 j + k 
s(2 [C 1/21 + 1) r, H k 

j=O k=1 

By the usual relations for binomial coefficients, we get 

(3.13) [4C) I+m-1< C112 + 1) [4C] + m - 
(3.13) PI 1(c) (2[c12 +[4C1 I 
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and, for large m, Stirling's formula yields that P1(C) increases at most like 

(3.14) (( 1 _) L4C) 

Now it is easy to give an upper bound for the total number of arithmetic operations 
used by (2.12). 

(3.15) THEOREM. Let C E R'? and A E Rmxm be positive-definite. Let d-' be a 
lower bound for the entries q,EJE (1 < 4 < m) computed from A by (2.3). Then Algorithm 
(2.12) (without Steps 1, 2, 3) uses at most 

(3.16) 6 (2m3 + 3m2 - Sm) 

+ 2(m2 + 12m-7)((2[V] + 1)( [4Cdl ) + 1 

arithmetic operations for computing all x E Zm subject to xtrAx < C. 

Proof. The computation of the qij (1 < i < j < m) in (2.3) requires 

1 (2m3 + 3m2 - Sm) 

arithmetic operations. The number of tuples obtained by Algorithm (2.8) was 
estimated under the premise q,, > 1 (1 < y < m). However, the case minf q,, I 1 < 
,u < m } = 1/d < 1 is tantamount to this situation if we only replace the constant C 
by Cd. During the execution of Step 5 of (2.12), i.e., of Algorithm (2.8), we obtain at 
most 2(P1(Cd) + 1) vectors (x1,...,xm) Ee Zm (or segments of such vectors), since 
the highest nonvanishing coefficient is restricted to be negative. The transition from 
one vector (or segment) to the next requires at most m2 + 12m - 12 arithmetic 
operations (in Steps 2 to 5 of (2.8)). For admissible vectors x E Zm, the computation 
of Q(x) consists of 5 arithmetic operations (though the computation of Q(x) is 
actually not necessary since Q(x) < C is guaranteed by the algorithm). a 

(3.17) COROLLARY. Let C E R>0 and A E Rmxm be positive-definite. Let A = RtrR 
be the Cholesky decomposition of A and d > 0 be an upper bound for the square of the 
norms of the rows of R' . Then (3.16) is an upper bound for the number of arithmetic 
operations for computing all x E Zm subject to xtrAx < C by (2.12) (without Steps 
1 to 3). 

Proof. We denote the rows of R -1 by r/tr as in the preceding section. Multiplying 
all entries of R by d1/2 then implies llr,'ll < 1 (1 < i < m) for the row-vectors r:tr of 
the scaled matrix R-1. If ri, is the ith diagonal entry of R, then I/rit is the ith 
diagonal entry of R-1. Hence, qii > 1 is equivalent to I/rit < 1 because of (2.5). But 
the latter is certainly correct because of l/rii < IIri'lI < 1. a 

We note that the corollary remains valid if we replace the Cholesky decomposition 
A = RtrR by any decomposition A = BtrB (B E Rrx`m) and Vd by an upper bound 
for the norms of the rows of B- 1. 

The upper bound (3.16) for the number of arithmetic operations does not contain 
those operations carried out in Steps 1 to 3 of Algorithm (2.12). We note that the 
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algorithm works also without those steps (and is then essentially (2.8)). The opera- 
tions of Steps 1 and 3 are comparable to those of computing the q,, from A in (2.3) 
and are therefore negligible. The number of operations required by the reduction 
Step 2 of course depends on the method applied. If we use the reduction algorithm 
of Lenstra, Lenstra and Lovasz, for example, it can be estimated without difficulties. 
That algorithm also turned out to be the best reduction method for our numerical 
examples in the next section. 

4. Numerical Investigations. The two lists presented in this section show that our 
method of combining a reduction algorithm with a (2.8)-type procedure is indeed 
very efficient. We introduce several suggestive abbreviations: 

RLLL: Reduction algorithm of Lenstra, Lenstra and Lovasz [5]. 
RDIE: Reduction algorithm of U. Dieter [1]. 
RKNU: Reduction algorithm of D. E. Knuth [4]. 

We consider numerical examples for problems of type (1.2). The input consists of a 
randomly generated matrix B E R11"'Xm and a positive constant C. In a first step B-1 
is computed. Optionally, one of the reduction procedures RLLL, RDIE, RKNU is 
then applied to the rows of B-1. The routine RENU "enumerates" all lexicographi- 
cally negative vectors of Zm subject to (2.9) (with B in place of R) and tests whether 
they solve (1.2). The routine RCHO carries out Steps 3 to 5 of (2.12) with B in place 
of S. 

The numbers in the two lists below are the CPU-time for ten examples of 
dimension m each. The symbol "-" means that no computations were carried out 
since nio results could be expected in a reasonable amount of time. " > t" means 
that in t seconds not all ten examples could be computed. " >> t" finally means that 
in t seconds no solution vector of the first example was obtained. (All examples 
considered had nontrivial solutions because of the choice of C.) 

(4.1) List. The entries b1J (1 < i, j < m) of the matrix B of (1.2) are independent, 
uniformly distributed variables in the interval [0, 1]; C:= 0.2 + 0.07(m - 5); CPU- 
time in seconds. 

m= 5 m= 10 m= 15 m=20 m=25 

RENU > 4000. - - - 

RKNU + RENU 0.056 5.736 - - - 

RDIE + RENU 0.059 7.515 - - - 

RLLL + RENU 0.057 4.873 > 16000. - - 
RCHO 0.046 0.133 1.048 2.071 70.025 
RKNU + RCHO 0.044 0.144 0.646 1.768 64.562 
RDIE + RCHO 0.047 0.158 0.589 1.432 56.112 
RLLL + RCHO 0.043 0.129 0.464 1.086 16.544 

(4.2) List. The entries b1j (1 < i, j < m) of the matrix B of (1.2) are independent, 
randomly generated variables, where the b,J (2 < i < m - 1) are uniformly distrib- 
uted in [0,1] and the bj,1 bmj are uniformly distributed in [0,1/m] (1 < j < m); 
C := 0.05 + 0.04(m - 5); CPU-time in seconds. 
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m = 5 m =10 m =15 m =20 

RENU >> 254. 
RKNU + RENU 0.040 8.580 >> 254. - 

RDIE + RENU 0.045 14.563 >> 254. - 

RLLL + RENU 0.043 6.558 >> 254. - 

RCHO 0.043 0.404 5.063 13.602 
RKNU + RCHO 0.040 0.205 1.134 2.626 
RDIE + RCHO 0.045 0.218 0.735 1.548 
RLLL + RCHO 0.039 0.188 0.573 0.909 

Our computational investigations show that the enumeration strategy RENU 
favored by U. Dieter and-implicitly-by D. E. Knuth yields acceptable results in 
comparison with algorithm RCHO only if a preceding reduction procedure succeeds 
in reducing the initial box into a box of very small volume. But this is not possible in 
general. It turned out that the combination of the Lenstra, Lenstra and Lovasz 
algorithm with routine RCHO was the fastest of the algorithms considered and also 
produced the smallest boxes. This was a little surprising since the theoretical results 
on RLLL are not very strong except for the polynomial time behavior. Clearly, we 
recommend to use RLLL + RCHO for solving problems of type (1.2). The amount 
of computation time, however, hardly depends on the choice of the reduction 
subroutine but mainly on the use of RCHO instead of RENU. RCHO is obviously 
the only method among the ones considered which is suited for handling problems in 
higher dimensions. 
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